

Institute of Applied Microelectronics and Computer Engineering

An Optimized WS-Eventing for Large-Scale Networks

Jan Skodzik, Vlado Altmann, Peter Danielis, Moritz Koal, Dirk Timmermann

University of Rostock, Germany

Institute of Applied Microelectronics and Computer Engineering

Eventing

- Easiest way to detect an event is polling
- Very ineffective

Eventing

- Avoiding polling
- Eventing (realized e.g. by publish/subscribe pattern)

Additional requirement for automation:

State of the art

- We focus on Devices Profile for Web Services (DPWS)
 - Designed for devices with constrained resources
 - o Intended domain (automation)

WS-Eventing included as a standard (by OASIS)

State of the art : WS-Eventing basics

How do we find an event source?

- Usage of WS-Discovery
- Already optimized in a highly scalable manner*
- Based on the P2P network Kad(emlia)

*Vlado Altmann et al.: "A DHT-based Scalable Approach for Device and Service Discovery" 12th IEEE International Conference on Embedded and Ubiquitous Computing (EUC14), August 2014

Standard notification procedure

Event sinks

- What happens if an event occurs?
- Notification transmitted sequentially
- Scales badly
- Overloading of the source

Highly scalable notification procedure

- Utilizing the subscribed sinks
- High scalable approach
- Forwarding the subscription list

Event sinks

How to achieve real-time

- For a Real-time System by choosing a platform and OS
- For communication a TDMA-based Peer-to-Peer approach has been developed called HaRTKad*

*Jan Skodzik et al.: "HaRTKad: A hard real-time Kademlia approach" 11th IEEE Consumer Communications and Networking Conference (CCNC)

Two scenarios

Reliability

- 1st scenario:
 - Sending the notification without any acknowledge (ACK)
 - $\,\circ\,$ Less reliability, less complexity, less data volume
- 2nd scenario:
 - $\,\circ\,$ A response from every notified event sinks is required
 - o Higher reliability

1st scenario		2nd scenario	
	Notification	$ \begin{array}{c} $	
Event source	Event sink	Event source Event s	sink

EXI: Efficient XML Interchange

- In WS the data are usually XML coded
 Not very efficient
- Usage of Efficient XML Interchange (EXI)
- EXI allows a high lossless compression
 - o Binary notation of the data
- W3C standard

Prototype

- ZedBoard as target platform

 ARM Dual Core @ 667 MHz
 1-GBit Ethernet connection
- Runs the Kad software (HaRTKad application)

WS-Eventing			
HaRTKad			
IwIP (UDP/IP)			
FreeRTOS			
ARM-based Hardware			

Prototype setup

- One event source and 18 event sinks
- Connected via a 1-GBit switches

Prototype setup

Results: Scenario 1 - Without ACK

Results: Scenario 1 - Without ACK

Results: Scenario 1 – Trend line without ACK

Results: Scenario 2 - With ACK

Results: Scenario 2 - With ACK

Results: Scenario 2 – Trend lines with ACK

Supported nodes at different automation scenarios

Profile	Human	Process	
Cycle time	100 ms	10 ms	
#Event sinks per event source	200		
Data amount per event source	34,240 Byte		
#Event sources	381	38	
#Event sinks total	76200	7600	

How to sort the lists?

- Direct influence on who receives notification first
- 1st option:
 - First devices with high priority in timing
 - Bad results if a node close to source fails
 - As all following nodes are affected

- 2nd option:
 - First devices with highest reliability
 - $_{\odot}\,$ Better as no following nodes are affected if a node fails
 - Better reliability and average timing

Reliability

Summary

- Presentation of a scalable WS-Eventing approach
- Results from a prototype
 - $\circ~$ An comparison with standard notification
- High efficiency due to utilization of EXI
- Two approaches sorting the lists

- Future Work:
 - $\circ~$ Create simulation to verify behavior for thousand of nodes

Thank you for your attention!

Any questions?

Backup

Thread priorization

Thread

Main

External control

Kad communication

Search

Network

Maintenance

Idle

Program Flow

Description

		•
I. Initial Kad Operations	•	Bootstrapping and Maintenance;
II. Search Tolerance	•	Determine the search tolerance
Determination		 Max. one node for each hash value
III. Initial		First synchronization of the Kad network
Synchronization		
IV. Application	•	Application on top of HaRTKad
V/ Maintonanaa	•	Enable maintenance of Kad network
v. maimenance		 Also Bootstrapping
V/L Pa-synchronization	•	Re-synchronize the network
vi. ixe-synchronization		 Due to clock drift of nodes
	II. Search Tolerance Determination III. Initial Synchronization	II. Search Tolerance Determination•III. Initial Synchronization•IV. Application•V. Maintenance•

Data Transmission in HaRTKad

Supported Network Size by HaRTKad

Scenario	Human	Process	Motion
Delivery constraint T _{Del} [ms]	100	10	1

$$Nodes = \frac{T_{Del}}{T_{Action} + (log_2(Nodes) * T_{Step})}$$

$$Nodes_{Max} = \left[\frac{T_{Del} * log(2)}{T_{Step} * W\left(\frac{2^{\frac{T_{Action}}{T_{Step}}} * T_{Del} * log(2)}{T_{Step}}\right)} \right]$$

T_{Del} T__{Action} T__{Step} W Delivery constraint Time for interacting with node Time for further search step Lambert W-function

HaRTKad Prototype

- Zedboard as target platform

 ARM Dual Core @ 667 MHz
 1 Gbit/s Ethernet connection
- Allows to determine T_{Step} and T_{Action}
- Runs the Kad software (HaRTKad application)

